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This research article is concerned with the analytical assessment and mathematical modelling
to unveil the characteristic of a torsional wave in the irregular Earth’s crustal stratum. This
investigation has been performed to clarify of possible occurrence of the torsional wave
in an irregular self-reinforced composite layer bonded between dry sandy media and an
isotropic elastic half-space. Rectangular and parabolic irregularities have been assumed at
the interface of the intermediate layer and the lower half-space. In order to acquire the
required dispersion equation, the appropriate boundary conditions with the assistance of
displacement and stress components have been well satisfied. The effects of different affecting
parameters such as reinforcement, sandiness, initial stress and irregularity parameters have
been explored and explained by suitable graphs. Moreover, a comparative study has also
been accomplished graphically for rectangular, parabolic, and no irregularities.
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1. Introduction

Disciplines such as seismology, solid physics, geotechnical engineering, geophysics, seismic waves
have been considered extensively for salient dynamic survey equipment. The major objective of
studying seismic waves is to unveil characteristic properties of different equipment inside the
structure of the Earth. Some of the notable works were presented by Akbarov et al. (2011),
Selim (2007), Ozturk and Akbarov (2009), Chattopadhyay et al. (2011), Gupta and Bhengra
(2017a), etc.

Numerous problems associated with wave propagation in a composite medium such as fiber-
-reinforced medium has attracted attention of many theoretical mathematicians and geophysi-
cists. A wide variety of applications of composite materials in the industrial area ignites the
interest of many researchers towards it. Alumina, concrete, and fiberglass are examples of fiber-
-reinforced materials. Adkins and Rivlin (1955) established the model of continuum theory for
a fiber-reinforced material later on modified by Spencer (1972) and Maugin (1981). Belfield et
al. (1983) developed a linear model for fiber-reinforced elastic plates with the reinforcement
continuously distributed in concentric circles.

The initial stress is a stress that persists in an elastic structural body, even if there are no
external forces available and, therefore, the body is defined as initially stressed. In the medium,
initial stresses can be triggered by both an artificial and natural mechanism. There is a possibility
for the existence of initial stress inside the Earth owing to variation of temperature, pressure of
atmosphere, existence of surcharge layer, creep, variation in gravity, etc. These stresses contribute
a noteworthy effect on seismic wave propagation as well as the material of the medium. Biot
(1940) described the vital effect of the initial stress on propagation of seismic waves. A brief
discussion on the upshot of the initial stress on the torsional wave propagation was explored by
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Dhua et al. (2015). Gupta and Bhengra (2017b) gave an extensive discussion regarding the favor
of the initial stress on the soil dynamics.

The Earth’s surface may not only be considered as a plane surface but a surface having
irregular boundaries. Elastic wave propagation in irregular layered media has been substantially
encapsulated in many research works such as Kaur and Tomar (2005), Kaur et al. (2005),
Chattopadhyay et al. (2009), Singh and Sahu (2017), etc.

The present paper gives a brief mathematical overview of propagation of the torsional wave
in an irregular fiber-reinforced medium bonded between an initially stressed dry sandy half-space
and an isotropic elastic half-space. By utilizing dynamical equations of motion, the displacement
components have been concluded separately for all three media. The dispersion equation has
been acquired in a closed-form mathematically by utilizing the displacement components and
suitable boundary conditions. The foremost goal of the present article is to exhibit the impact
of reinforcement, sandiness, initial stress, rectangular, and parabolic irregularities and the het-
erogeneity parameter. To imagine the affect of these parameters, graphs have been followed
independently for each parameter and displayed in detail.

2. Mathematical formulation

Let the model be subjected to a cylindrical coordinate system such that r-axis is in the direction
of wave propagation and the positive z-axis is being directed along the lower half-space. The
proposed model is considered with a self-reinforced composite layer clamped between a dry
sandy half-space and an isotropic half-space. At the interface of the layer and the lower half-
-space, two types of irregularity (parabolic, rectangular) have been considered. The equations
of the irregular interfaces for both cases (rectangular and parabolic) may be defined as

z = ει(r) (2.1)

where ι(r) and ε is mentioned in Appendix.

3. Study of the self-reinforced composite layer

The consitutive equation for a transversely isotropic linear elastic material with the preferred

direction
−→
∂ is

ϕij = λekkδij + 2µT eij + α1(∂k∂mekmδij + ekk∂i∂j)

+ 2(µL − µT )(∂i∂kekj + ∂j∂keki) + β1∂k∂mekm∂i∂j
(3.1)

where i, j, k,m = 1, 2, 3, and ϕij , eij , δij are components of stresses, strain, and the Kronecker

delta, respectively. The unit reinforcement component is defined by
−→
∂ = [∂1, ∂2, ∂3], such that

∂21 + ∂
2
2 + ∂

2
3 = 1. µT , µL are defined as the transverse and longitudinal shear modulus, respec-

tively.

Now, for propagation of the torsional wave, we have

ur = 0 uz = 0 uθ = v1(r, z, t) (3.2)

which gives

ezz = 0 eθθ = 0 err = 0 ezr = 0

erθ =
1

2

(∂v1
∂r
− v1
r

)

eθz =
1

2

∂v1
∂z

(3.3)
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Fig. 1. Geometrical formulation of the proposed model: (a) with rectangular irregularity, (b) with
parabolic irregularity

Using Eqs. (3.2) and (3.3) in Eq. (3.1), the non vanishing stress components are as follows

ϕθz = R
∂v

∂r
− v1
r

ϕrθ = S
(∂v1
∂r
− v1
r

)

+Q
∂v1
∂z

(3.4)

where

R = µT + ∂
2
3(µL − µT ) S = µT + ∂

2
1(µL − µT ) Q = ∂1∂3(µL − µT ) (3.5)

Applying the above

∂ϕrθ
∂r
+
∂ϕθz
∂z
+
2

r
ϕrθ = ρ1

∂v1
∂t

(3.6)

where ρ1 is density of the intermediate layer.
In view of Eqs. (3.4) and (3.6) one obtains

R
∂2v1
∂z2
+ 2Q

∂2v1
∂r∂z

+ S
∂2v1
∂r2
+
Q

r

∂v1
∂z
+
S

r

(∂v1
∂r
− v1
r

)

= ρ1
∂2v1
∂t2

(3.7)

The solution to Eq. (3.7) may be taken as

v1 = V1(z)J1(kr)e
iωt (3.8)

where J1(kr) and ω are mentioned in Appendix.
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Equation (3.7) with the help of Eq. (3.8) becomes

d2V1
dz2
+ L
dV1
dz
+MV1 = 0 (3.9)

where L, M are defined in Appendix.
From Eq. (3.9), we have

V1 = e
−
Lz

2 (A2 sin
√
Nz +A3 cos

√
Nz) (3.10)

where N =M − L2/4, and L, M , N , A2, A3 are all constants.
Hence, the displacement of the self-reinforced medium is given by

v1 = e
−
Lz

2 (A2 sin
√
Nz +A3 cos

√
Nz)J1(kr)e

iωt (3.11)

4. Study of the upper half space

The equations of motion without body forces in cylindrical coordinates are given by

∂ϕrr
∂r
+
1

r

ϕrθ
∂θ
+
∂ϕrz
∂z
+
ϕrr − ϕθθ
r

= ρ
∂2u0
∂t2

∂ϕrθ
∂r
+
1

r

ϕθθ
∂θ
+
∂ϕθz
∂z
+
2

r
ϕrθ = ρ

∂2v0
∂t2

∂ϕrz
∂r
+
1

r

ϕθz
∂θ
+
∂ϕzz
∂z
+
1

r
ϕrz = ρ

∂2w0
∂t2

(4.1)

where ϕrr, ϕθθ, ϕzz, ϕrz, ϕrθ and ϕθz are stress components. u0, v0 and w0 are displacement
components. Now the relation between stress and strain are given by

ϕij = λΩδij + 2µeij (4.2)

where µ ,λ are Lame’s constants, eii = Ω, and eij is mentioned in Appendix.
For torsional wave propagation

u0 = 0 w0 = 0 v0 = v0(r, z, t) (4.3)

Using the above equations, we have

∂ϕrθ
∂r
+
∂ϕθz
∂z
+
2

r
ϕrθ = ρ

∂2v0
∂t2

(4.4)

where

ϕrθ = µ
(∂v0
∂r
− v0
r

)

ϕzθ = µ
∂v0
∂z

(4.5)

Using Eq. (4.5), Eq. (4.4) reduces to

µ(z)
( ∂2

∂r2
+
1

r

∂

∂r
− 1
r2

)

v0 +
∂

∂z

(

µ(z)
∂v0
∂z

)

= ρ(z)
∂2v0
∂t2

(4.6)

Consider the solution

v0 = V0(z)J1(kr)e
iωt (4.7)

where J1(kr) and ω are defined in Appendix.
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Using Eq. (4.7) in (4.6), we have

d2V0
dz2
+
µ′(z)

µ(z)

dV0
dz
− k2
(

1− c
2

c2s

)

V0(z) = 0 (4.8)

where c = ω/k, cs =
√

µ/ρ.
Rigidity and density of the uppermost half-space are

µ = µ0 and ρ = ρ0 (4.9)

Using Eq. (4.9), Eq. (4.8) reduces to

d2V0
dz2
−m20V0(z) = 0 (4.10)

where m0 and shear velocity c0 are mentioned in Appendix.
The suitable solution to Eq. (4.10) is

V0 = A1e
m0z (4.11)

where A1 is an arbitrary constant. Hence, the displacement component in the homogeneous
upper half space is

v0 = A1e
m0zJ1(kr)e

iωt (4.12)

5. Study of the lower half space

The equation of motion for the initially stressed dry sandy mantle is given by

∂Ψrθ
∂r
+
∂Ψzθ
∂z
+
2

r
Ψrθ +

∂

∂z
(Pezθ) = ρ

∂2v2
∂t2

(5.1)

where v2 = v2(r, z, t), N = ηµ, where η is the sandy parameter.
Rigidity, initial stress, density of the lowermost half-space are assumed as

µ = µ2[1 + sinh
2(αz)] P = P2[1 + sinh

2(αz)] ρ = ρ2[1 + sinh
2(αz)] (5.2)

where

Ψrθ = 2Nerθ Ψzθ = 2Lerθ erθ =
1

2

(∂v

∂r
− v
r

)

erθ =
1

2

∂v

∂z

Using the above relations in Eq. (5.1), we have

N
(∂2v2
∂r2
+
1

r

∂v2
∂r
− v2
r2

)

+
∂

∂z

(

δ
∂v2
∂z

)

= ρ
∂2v2
∂t2

(5.3)

where δ = N + p/2.
The solution to Eq. (5.3) is taken as

v2 = V2(z)J1(kr)e
iωt (5.4)

where J1(kr) and ω are mentioned in Appendix. So, Eq. (5.3) reduces to

d2V2(z)

dz2
+
1

δ

dV2(z)

dz

dδ

dz
− k

2N

δ

(

1− ρc
2

N

)

V2(z) = 0 (5.5)
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Now substituting V2(z) = Vθ(z)/
√
δ in Eq. (5.5), we have

d2vθ(z)

dz2
− 1
2δ

[d2δ

dz2
−
(dδ

dz

)2]

vθ(z) =
K2N

δ

(

1− ρc
2

N

)

vθ(z) (5.6)

Using hyperbolic variation in Eq. (5.6), then Eq. (5.6) reduces to

d2vθ(z)

dz2
− β2vθ(z) = 0 (5.7)

where the values of β, ξ2 and c2 are given in the Appendix.

The solution to Eq. (5.7) is obtained by vθ(z) = A4 exp(−βz) +A5 exp(βz).
The solution to Eq. (5.7), satisfying the boundary condition v3(z) → 0 as z → ∞, is given

by vθ(z) = A4 exp(βz).

Thus, the displacement in the dry sandy lower half space is

v2(z) =
A4e
−βz

√

(

ηµ2 +
p2
2

)

[1 + sinh2(αz)]

J1(kr)e
iωt (5.8)

where δ = (ηµ2 + p2/2)[1 + sinh
2(αz)].

6. Boundary conditions of the problem

(1) Continuity of displacement holds at the interface of the uppermost half-space and the
intermediate layer, i.e.

(i) v1(z) = v2(z) at z = −H

(ii) µ0
∂v0
∂z
= R
∂v1
∂z
+Q
(∂v1
∂r
− v1
r

)

at z = −H
(6.1)

(2) Displacement and stresses are continuous at the irregular interface of the lowermost half-
-space and the intermediate layer, i.e.

(i) v1(z) = v2(z) at z = ει(r)

(ii) ϕθz − ει′(r)ϕrθ = Ψθz − ει′(r)Ψrθ at z = ει(r)
(6.2)

Using Eqs. (3.11), (4.12) and (5.8) in the above four equations, the following equations are
derived

A1e
−moH +A2e

LH

2 sin(
√
NH)−A3e

LH

2 cos(
√
NH) = 0

A1µ0m0e
−m0H −A2e

LH

2

(RL

2
sin(
√
NH) +R

√
Ncos(

√
NH)

)

−QJ(kr) sin(
√
NH)

)

−A3e
LH

2

(

−RL
2
cos(
√
NH) +R

√
N sin(

√
NH) +QJ(kr) cos(

√
NH) = 0

A2e
−
Lει(r)

2
sin
(

√
Nει(r)

)

+A3e
−
Lει(r)

2
cos
(

√
Nει(r)

)

− A4
T
e−(βει(r)) = 0

A2e
−
Lει(r)

2

[

A
√
Ncos

(

√
Nει(r)

)

− AL
2
sin
(

√
Nει(r)

)

+BJ(kr) sin
(

√
Nει(r)

)

]

+A3e
−
Lει(r)

2

[

−A
√
N sin

(

√
Nει(r)

)

− AL
2
cos
(

√
Nει(r)

)

+BJ(kr) cos
(

√
Nει(r)

)

]

−A4ηµ2e−βει(r)Y = 0

(6.3)
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Solving Eqs. (6.3), we finally obtain

tan
(

√
NH +

√
Nει(r)

)

=
AQ
√
NJ(kr) +BR

√
NJ(kr)− ηµ2Y TR

√
N − µ0m0A

√
N

BQJ2(kr)− ALQ2 J(kr)− BRL2 J(kr) + ARL
2

4 +ARN − µ2TY
(

QJ(kr)− RL2 )
)

(6.4)

where A, B, J(kr), Y , N , Q, L are mentioned in Appendix.

Equation (6.4) is the required dispersion equation of the torsional wave in the irregular
self-reinforced composite layer bonded between dry the sandy media and the isotropic elastic
half-space.

7. Particular case

Case 1

If we take µL = µT = µ1(say), then Eq. (6.4) assumes the form

tan

(

kH + kει(r)

√

c2

c21
− 1
)

=
1

µ21k
√

c2

c2
1

− 1

·
{2µ21ει

′(r)

r
+ ηµ1µ2

[

β +
sinh
(

2αει(r)
)

1 + sinh2
(

ει(r)
) + ει′(r)J(kr)

]

+m0µ0µ1
}

(7.1)

This is the dispersion equation of the torsional wave in the irregular isotropic layer bounded
between the isotropic half-space and the initially stressed dry sandy stratum.

Case 2

If we consider ε = 0, P = 0 in (7.1), then it takes the form

tan

(

kH

√

c2

c21
− 1
)

=

ηµ1µ2

√

(

1− c2

ηc2
2

)

+ µ0µ1

√

1− c2
c2
0

µ21

√

c2

c2
1

− 1
(7.2)

This is the dispersion equation of the torsional wave in the isotropic layer bounded between the
isotropic half-space and the isotopic dry sandy mantle.

Case 3

Again, if we eliminate the lower half-space, dispersion Eq. (7.2) takes the form

tan

(

kH

√

c2

c21
− 1
)

=

µ0

√

1− c2
c2
0

µ1

√

c2

c2
1

− 1
(7.3)

This is the classical Love wave equation which validates the problem.
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8. Numerical results and discussion

For the self-reinforced composite layer (Markham, 1970): µL = 56.6 · 108N/m2, µT = 24.6 ·
108N/m2, α1 = −1.28 · 109N/m2, β1 = 2209.0 · 108N/m2, λ = 5.65 · 108, ρ = 7800Kg/m3.
For the homogeneous isotropic half-space and for the sandy half-space, the data have been

taken from Gubbins (1990) as µ0 = 323 · 108N/m2, ρ0 = 2802Kg/m3, µ2 = 65.4 · 109N/m2,
ρ2 = 3409Kg/m

3. Moreover, the following data has been used: a1 = 0.00316227, a3 = 0.999995,
kr = 5.

Figure 2a displays that for the increasing value of α/k, the phase speed increases. From this
figure, it can be seen that the curves are getting accumulated at the higher frequency region.
So the impact of this parameter is too low at that region. Figure 2b manifests the upshot of
the sandiness η present in the lowermost half-space. This figure ensures that phase velocity is
growing proportionally to the increasing value of this parameter. Figure 2c was drawn for a
better understanding of the effect of the initial stress P > 0. We observed that the increasing
value of initial stress decreased the phase velocity. Figure 2d shows the scattering curves for the
torsional wave when the tensile initial stress P < 0 has been taken under consideration. From
this figure, we observe that the phase velocity is growing proportionally with the tensile initial
stress.

Fig. 2. Fluctuation of the phase velocity with reference to the wave number: (a) for different values of
the inhomogeneity parameter 1/bk, (b) for different values of the sandy parameter η, (c) for different
values of the initial stress acting on the half-space, (d) for different values of the tensile initial stress

acting on the half-space
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Figure 3a displays a noteworthy result of the phase speed of the torsional wave versus the
dimensionless wave number kH for distinct values of h/H. It is observed that as h/H increases,
the phase speed diminishes. In Fig. 3b, a study has been carried out to get the impact of µL/µT .
It is seen that the increasing value of µL/µT diminishes the phase velocity. Figure 3c expresses
the impact of reinforced parameters on the torsional wave propagation. The scattering curves
have been traced for distinct values of reinforcement a21, a

2
3. From the figure, it has been found

that as a1 increases, as well as a3 diminishes, the velocity of torsional wave diminishes. Hence, the
torsional wave speed emphatically depends on the reinforced parameters. Figure 3d shows the
refinement of phase speed of the torsional wave aligned with the dimensionless wave number kH
for different sizes of the irregular parameter ε. From this figure, it is seen that the irregularity
parameter encompasses a recognizable impact on the torsional wave propagation. A rising value
of ε reduces the phase speed at a specific frequency.

Fig. 3. Fluctuation of the phase velocity with reference to the wave number: (a) for different values
of h/H , (b) for different values of µT /µL, (c) for different values of the reinforcement parameter, (d) for

different values of the irregularity parameter ǫ

Figure 4a demonstrates variation of the phase velocity versus the dimensionless wave num-
ber kH for different kinds of irregularity, specifically rectangular, parabolic and no irregularity.
From this figure, one can see that the phase velocity is more impacted by the presence of rect-
angular irregularity, which means that the phase velocity is getting smaller in the presence of
rectangular irregularity. Figure 4b presents a comparative study of the phase velocity of the tor-
sional wave with and without the self-reinforced parameter under the effect of different kinds of
irregularity. Clearly from this figure, it is observed that the phase velocity is less in the presence
of reinforcement.
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Fig. 4. Fluctuation of the phase velocity with reference to the wave number: (a) for different kinds of
irregularity, (b) for different kinds of irregularity in the presence and absence of the reinforcement

parameter

9. Conclusions

The prime intention of the current work is to elaborate the impact of reinforcement, sandiness,
inhomogeneity, initial stress and irregularity on the torsional wave propagation. The dispersion
equation has been evaluated in a closed form for the considered model. With the assistance of
the dispersion equation, the impact of all the influencing parameters on the phase velocity has
been well exhibited graphically. Some salient points are given below:

(i) A magnitude increment of the wave number enlarges the phase velocity, i.e. the increasing
magnitude of the wave velocity increases the phase velocity.

(ii) A rising value of the inhomogeneity parameter amplifies the phase velocity.

(iii) A raising value of the sandiness parameter connected with the lower half-space possesses
a favourable impact on the phase velocity.

(iv) The phase velocity decreases with the increasing amplitude of compressive initial stress,
whereas the phase velocity increases with a decrease in the amplitude of tensile initial
stress.

(v) Increasing values of the dimensionless parameter h/H, ε and the reinforcement diminishes
the phase velocity.

A substantial review of the present paper may contribute to the analysis of problems of seismic
wave propagation, signal and vibrations while studying seismic data, geophysical observations
of the layered structure having dissimilar characteristic properties and containing irregularities
caused by mountain roots, continental margin, etc. These outcomes can also be employed as the
foundational sequence for examination of underground formations.

Appendix

i. In the case of rectangular irregularity, the function ι(r) can be defined as

ι(r) =

{

h for |r| ¬ m
0 for |r| > m
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In the case of parabolic irregularity, the function ι(r) can be defined as

ι(r) =







h
(

1− r
2

m2

)

for |r| ¬ m
0 for |r| > m

where

ε =
h

2m
ε≪ 1

ii. The strain components are characterized as

eij =
1

2
(uij + uji) i, j = 1, 2, 3

iii. J1(kr) is the 1st kind Bessel function of the order one.

iv. c0 =

√

µ0
ρ0
, c2 =

√

µ2
ρ2

v. m0 = k

√

1− c
2

c20

vi. β = k

√

√

√

√
α2

k2
+
1− c2

ηc2
2

1 + ξ2
where ξ2 =

P2
2ηµ2

vii. L =
2QkJ ′1(kr)

RJ1(kr)
+
Q

Rr
and

M =
Sk2J ′′1 (kr)

RJ1(kr)
+
SKJ ′1(kr)

RrJ1(kr)
+
ρω2

R
− S
Rr2

viii. A = R− ει′(r)Q, B = Q− ει′(r)S and

T =

√

(ηµ2 +
P2
2
)[1 + sinh2(αει(r))]

ix. Y =
−β − α2

sinh(2αει(r))
1+sinh2(ει(r))

− ει′(r)J(kr)
√

(

ηµ2 +
P2
2

)

(1 + sinh2 ει(r))

and we assume

J(kr) =
krJ ′1(kr)− J1(kr)

r

x. N =
Sk2J ′′1 (kr)

RJ1(kr)
+
SkJ ′1(kr)

RrJ1(kr)
+
ρω2

R
− S
Rr2
− 1
4

(2QkJ ′(kr)

RJ1(kr)
+
Q

Rr

)2
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